2018 Winner

Machine learning for smarter seed selection

The Inspire Challenge is an initiative to challenge partners, universities, and others to use CGIAR data to create innovative pilot projects that will scale. We look for novel approaches that democratize data-driven insights to inform local, national, regional, and global policies and applications in agriculture and food security in real time; helping people–especially smallholder farmers and producers–to lead happier and healthier lives.

This proposal was selected as a 2018 winner, with the team receiving 100,000 USD to put their ideas into practice. 

Machine learning for smarter seed selection

Each year, farmers around the world decide what to plant in their fields. The seeds they choose matter greatly; livelihoods and food security, for the farmer and others linked by the global food system, are at stake. While some seed varieties have the potential to produce record-breaking yields, they also carry risk and depend on specific conditions. Other seed varieties have more stable, but comparatively lower yields.

Using machine learning, researchers can predict both yields and risks associated with different seeds at a specific farm and select a mixture of varieties that represents the optimal trade-off. Using data from hundreds of on-farm and experimental International Maize and Wheat Improvement Center (CIMMYT) sites, as well as a network of seed companies producing varieties for diverse agro-ecologies, BioSense will develop machine learning models that predict the performance of seed varieties in particular conditions in order to advise maize farmers in Mexico on what to plant.

The project benefits seed companies and farmers alike. Seed companies can ensure that they sell the best seed variety possible for a specific region, which reduces the risk of marketing the wrong type of seed to the target population. In turn, this reduces farmers’ risk of low crop yield or crop failure. It also minimizes risk for government programs that subsidize maize seed to support smallholder farmers. As smallholder farmers’ production increases, so will Mexico’s maize self-sufficiency.

Finally, the project will serve as a decision support tool. Through climate prediction data, seed companies and farmers can plan for the use of seeds best suited to changing, future climates. This service will be provided for free to the seed companies involved with the project–most of which are small and otherwise lack the capital needed to access decision support services.


Dr Sanja Brdar | Email
Head of Knowledge Technologies Group at BioSense Institute

Marko Panić | Email
Machine Learning Expert at BioSense Institute

Oskar Marko | Email
Data Analytics Expert at BioSense Institute

Gordan Mimifá
Weather and Climate Expert at BioSense Institute

Dr Kai Sonder | Email
Head of GIS Unit at CIMMYT

Dr Alberto Chassaign
Maize Seed systems specialist for Latin America at CIMMYT


Step by step

October 2018

US$100K grant

The project was one of five winners of the Inspire Challenge 2018 and was awarded US$100K at the second annual convention of the CGIAR Platform for Big Data in Agriculture, 3-5 October 2018.

February 2019

Database formed

The team created a database with all the necessary data about maize production in Mexico. It includes satellite images, performance data, and weather information.

Example of satellite image data with normalized difference vegetation index calculated.

April 2019

Digitisation of field records

Hundreds of samples about maize growth and agricultural practice on CIMMYT’s test fields were integrated into the database.

Samples of new maize varieties were collected from 126 evaluation sites in 2017 and from 115 in 2018.

Project partner Biosense used machine learning techniques to determine which of the maize varieties would work best at any of these sites, comparing climate, soils, and other parameters. If the developed algorithm is successful, the team hopes to use it in other countries in order to give a variety of recommendations to farmers in specific locations.

CIMMYT’s maize testing sites from which data was collected for the team’s Mexico maize production database.

Read more about the data collection sites

April 2019

Dataset enrichment

The team developed modules for automatic acquisition of soil data, historical weather data, and satellite vegetation indices based on the GPS location.

April 2019

Feature engineering

The team then engineered meteorological and satellite features that are good indicators of yield, based on the domain knowledge.

April 2019

Data fusion

The team fused data coming from heterogeneous sources into a single database suitable for machine learning.

May - August 2019

Machine learning

A data-driven yield prediction model will be developed based on soil and climate data, as well as a model for assessing yield stability—the hybrids’ response to drought and other factors.

August - September 2019

Development of seed selection algorithm

A module for finding the portfolio of hybrids with optimal yield/risk trade-off at the particular farm will be developed. Fertiliser application will be optimised using machine learning and evolutionary algorithms.

October 2019


The system will be thoroughly tested and its performance will be evaluated. The team will then assess its potential for scaling up on a global level.

Stay tuned for more updates!

Project News and Resources

Machine learning for smarter seed selection to reduce risks for Mexican maize farmers

Machine learning for smarter seed selection to reduce risks for Mexican maize farmers

Published on maize.org. The International Maize and Wheat Improvement Center (CIMMYT) and BioSense Institute jointly won the CGIAR Platform for Big Data in Agriculture Inspire ...
Drones fly in to change the way we work in research fields

Drones fly in to change the way we work in research fields

Published on https://www.icrisat.org The future of drones in agriculture is a subject undergoing intense study. In line with it a ...
Now, get critical seed data in one click

Now, get critical seed data in one click

Published on https://www.icrisat.org A modern digital seed ‘catalog’ and seed ‘roadmap’ tool is now available for information about the quality and ...
Multinational training workshop on analytical tools builds momentum on crop improvement

Multinational training workshop on analytical tools builds momentum on crop improvement

Published on https://www.icrisat.org 24 Dec 2018 It is a really exciting time for crop improvement with new tools available and ...
Digital agriculture holds great promise for agricultural development

Digital agriculture holds great promise for agricultural development

By Dr Anthony Whitbread Published on https://www.icrisat.org 30 Nov 2018 ICT4D is a one-of-its-kind conference that explores the use of ...